

© 2023 Aducom Software Netherlands

1

PHsPeed Introduction
Debugging your PHP code

© 2023 Aducom Software Netherlands

2

PHsPeed: Getting Started

Welcome to the world of PHsPeed! This manual is designed to introduce you to our low-code PHP

development tool and help you work faster and smarter, aligning with the modern approach to web

application development.

In the previous documents, we discussed the fundamental features of the Integrated Development

Environment (IDE), created the first basic PHsPeed project demonstrating the 'hello world' example,

and showed you how to leverage the application wizards to expedite your development process. You

also know by now how to create a form manually and wrote your first PHP code in an Ajax event. We

also explained the bootstrap grid system to lay out your forms. You have a basic understanding about

events, integrating custom code, and the application logic flow. Now it is time to dive into the

possible failures. What if you have issues in the code. How can you debug and trace the error(s)?

Possible issues

This manual aims to provide you with comprehensive insights into the debugging capabilities that

PHsPeed offers for PHP applications. With PHsPeed, you can efficiently diagnose and resolve issues

within your PHP projects, all without the need for external software. Our integrated development

environment (IDE) empowers you to streamline your debugging process, enabling you to locate and

address problems right where they occur.

In standard PHP development, encountering errors is a common occurrence. These errors often

manifest as distinctive orange message forms, alerting you to the specific issues that have caused

your application to cease functioning. Typically, these messages display the line number at which the

execution was interrupted. However, merely possessing this information does not always lead to an

immediate identification of the underlying problem. While it points you to the point of application

termination, it does not necessarily reveal where the issue was introduced.

© 2023 Aducom Software Netherlands

3

Web applications encompass intricate structures with numerous potential points of failure. Various

factors can contribute to malfunctions, ranging from CSS anomalies that result in flawed field

rendering, JavaScript glitches leading to application dysfunction, to template errors preventing the

rendering of fields altogether. Given this complexity, determining the starting point for debugging

can be a perplexing challenge.

This manual provides a comprehensive overview of the debugging methodologies natively supported

by PHsPeed. The distinctive feature of our approach is that it eliminates the need for supplementary

software tools. All debugging processes are seamlessly integrated into our IDE, streamlining your

workflow and enhancing your debugging efficiency.

The subsequent sections of this manual will delve into specific debugging techniques that PHsPeed

offers "out of the box". We will illustrate step-by-step instructions on utilizing these tools effectively,

ensuring you gain a comprehensive understanding of how to diagnose and rectify issues within your

PHP applications.

Debugging PHP.

When you generate and run the code, PHsPeed will abort on issues and shows the error with line:

Clicking on ‘jump to code’ will open the PHP editor and displays the position where the application

failed. This looks like the traditional PHP way. The line where the message is generated does not

provide information about the real issue. In this case, it is NOT a PHP failure but a database failure

(SQL error).

© 2023 Aducom Software Netherlands

4

In PHsPeed, you can view the history of executed SQL statements. Open the tab SQL to look at the

executed statements:

The ‘SQLSTATE[23000]: Integrity constraint violation: 1052 Column 'shopperid' in field list is

ambiguous ‘ is found in the list, lets open the full history by clicking on the button behind.

Now you see a list of procedures that are called (in reverse order, most recent on the bottom), and

again, you have a button to jump to the file/line that cause the error:

© 2023 Aducom Software Netherlands

5

The next step, is to set a breakpoint here, run the application in debug mode, and after stopping at

the breakpoint you can step through the code to find the spot causing the issue. In the following

paragraphs we will show you how you can debug your PHP code, by running the application in Debug

mode.

Running you application in Debug Mode to debug PHP.

When you have opened the PHP editor you will find the debugging buttons in the right upper corner.

For PHP debugging the first two toggle buttons are used:

1. If set, when you run the application, then the application will stop at the first line, allowing

you to step through your code, and follow the application flow.

2. If set (it will set 1 automatically), when you run the application, then the application will

only stop if a set breakpoint is met (this button works in conjunction with the previous

button).

If you want to set breakpoints in your generated code, then you have to open the module from the

generated apps tab. In the following sample we opened shops_form_1 and have set a breakpoint at

line 26.

Setting and resetting breakpoint

A breakpoint is a row where execution of the program will pause, allowing you to inspect values of

variables, or as a starting point to step through your program line-by-line. To set a breakpoint, open

the PHP source code file where you want to set the breakpoint and locate the line. Click with the

mouse in the first column of the red marked gutter. This will set the breakpoint and shows with a red

icon, and the line will turn red.

© 2023 Aducom Software Netherlands

6

To unset, simply click again on the line in the red gutter area.

NOTE. You can only set breakpoints in the generated code. That might sound obvious, but is easily be

overlooked. If you want to set a breakpoint in the runtime then do NOT use the files that are shown

in the phspeed runtime section of the project tree, as these files are not executed, but copied into

your project. To do this, open the class tree / function / reference on the right side of the editor. Use

the reference tab.

This form shows the component(s) that the shown component is inherited of. Actually this is a visual

way to follow the object tree to the basic object (spobject). To follow the tree, click on the object in

the references and it will open. You can continue this until you reach the root object.

The files that are shown in the editor are the actual files in your project. So you can set breakpoints

here.

Setting conditional breakpoints

© 2023 Aducom Software Netherlands

7

If you need to set a breakpoint that will pause the program on a certain condition, then hold the shift

key while clicking with the mouse on the gutter. Next a dialog will open to enter your expression.

This needs to be a valid PHP conditional expression like: $this->ver = ‘5’

Options when the program pauses on a breakpoint (or step)

If the application has stopped at a certain line, then you will have a number of options for debugging:

1. Inspect values of variables in execution mode

When you are stepping through the code or have paused in a breakpoint then you are able to

inspect the values of your program. The first option is to set the focus to the editor (click with

your mouse in the editor) and then hover above the variable to inspect:

This will give a first look at the values of the fields. Notice that objects and properties are not

shown. To inspect these values you need to use the inspect option that you find in the tabs

on the bottom of the IDE:

© 2023 Aducom Software Netherlands

8

You can enter the name of the variable you want to inspect or

point to the variable in the editor and use the right mouse

click to move the variable to the inspector.

The depth of the inspector can be set by clicking on the level

indicators (1-9). Keep in mind that the deeper you inspect,

the more data will be displayed. To help you locate the

variable you can search in the search box. This searches in the

shown result.

If the window is too small to show the full content, then

double click in the value column and the data will be shown in

a popup box.

2. Watch variables

If you step through your code, i.e. in iterations, then it can be handy to follow the state of a

certain variable during execution. You can do so by adding the variable to the watch list. This

window is refreshed on each step of execution.

© 2023 Aducom Software Netherlands

9

You can only watch ‘simple variables’, if you need to look into objects or arrays, you need to

use the inspector. You can add more variables to watch, but keep in mind that the content is

refreshed on each step of execution, increasing execution time.

3. Investigate session variable values

PHsPeed maintains variables in the session space. This means that your webform will not

contain application data other than the necessary fields on the form, csrf token etc. When

the execution of a PHP module ends, then the data is saved in the session space, and

retrieved when you open a new session. The content of the area can be viewed in the session

variable space:

This area can be quite large.

4. Inspect $_GET, $POST and $_FILE arrays

PHP works with $_GET (url variables), $_POST (form submits / ajax) and $_FILE (uploads)

variables. You can inspect those variables in the appropriate tabs:

Hint: NEVER use the $_POST and $_GET array directly unless you have to. Use the

rtrGetVar(‘variable’, ‘’) procedure instead. In the first place, this routine takes care of

injection problems and second, it will return a default value if the variable is not found in the

input space.

5. Inspect SQL trace

This allows you to follow the executed SQL statements. PDO does not enable you to see the

SQL statements including the ??? values. The use is explained in the top of this document.

6. Inspect JSON messaging between the form and application

Explained in an earlier document we showed the execution flow of a PHsPeed application. In

the first stage, only the template is sent, next an ajax event will retrieve the rendered data

and puts that in the form. The messages that are involved here can be inspected in the JSON

tab:

© 2023 Aducom Software Netherlands

10

For a deeper insight, double click on a row. Be careful with grids, as it will show all the

records. On huge arrays it could take a massive amount of time to display.

Double clicking on the form will open the JSON viewer:

To see the rendered text in a better format, double click on the row of choices like:

© 2023 Aducom Software Netherlands

11

7. Inspect raw messages between the application and the web server

PHP sends data to the web server. This data and the raw data that is sent back to the

application can be viewed in the DebugString

tab. The detail can be set in the run/debug

options. The more detail you show, the more

time it will take. On slower systems it might

be handy to enable/disable options.

© 2023 Aducom Software Netherlands

12

8. Step through your code

Once your application is pause, you have several options to continue.

You can use the mouse and the buttons above, but more convenient is to use the function

keys:

F7 : Step Into

If the line is a function call then hitting F7 will enter this function. If that function is in

another PHP file, then this file will be opened in a new tab. Otherwise it will execute the

line and stops at the next.

F8 : StepOver

If the line is a function call then hitting F7 will enter this function. If that function is in

another PHP file, then this file will be opened in a new tab.

 F9 : Continue

If you want to continue to the next time a breakpoint is hit, or finish the application then

use the continue key.

Notes on the debugger.

PHsPeed contains a client for XDebug. This debugger is installed in the PHP versions that comes with

PHsPeed. If you use your own environment, then you need to install XDebug in order to have the

debugger be able to work.

