

© 2023 Aducom Software Netherlands

1

PHsPeed Introduction
More on events and coding

© 2023 Aducom Software Netherlands

2

PHsPeed: Getting Started

Welcome to the world of PHsPeed! This manual is designed to introduce you to our low-code PHP

development tool and help you work faster and smarter, aligning with the modern approach to web

application development.

In the previous documents, we discussed the fundamental features of the Integrated Development

Environment (IDE), created the first basic PHsPeed project demonstrating the 'hello world' example,

and showed you how to leverage the application wizards to expedite your development process. You

also know by now how to create a form manually and wrote your first PHP code in an Ajax event. We

also explained the bootstrap grid system to lay out your forms. Now we will dive into customizing

your application by adding code. We will explain the application flow, events, and how PHsPeed

handles code generation and classes.

Basic application structure.

PHsPeed is a powerful web development framework that allows you to create applications manually

or through the assistance of wizards. When you create a new application, PHsPeed automatically

generates a basic controller application, which serves as the backbone of your module. This manual

will guide you through the process of creating and using controller applications effectively.

• Generating a Basic Controller Application

Upon creating a new application, either manually or by utilizing one of the available wizards,

PHsPeed generates a basic controller application. The name of this application corresponds

to the module you've created.

• Component Generation

© 2023 Aducom Software Netherlands

3

For each component you add to the form, PHsPeed generates a PHP class. This separation of

code ensures clean organization and modularity.

• Separation of Code Files

PHsPeed efficiently divides the application's code into separate files, including PHP,

JavaScript, CSS, and HTML. This approach enhances code readability and simplifies

maintenance.

• Starting the Controller PHP Application

When you initiate the controller PHP application, it generates a basic HTML template that is

sent to the client. The form is initially displayed on the client side.

• onDocumentReady Event

Upon loading the form in the browser, an onDocumentReady event is triggered. This event

calls the controller application to execute further actions. This event is executed as an Ajax

event.

• Rendering Components

The controller application proceeds to render all components into HTML, CSS, and JavaScript.

These rendered elements are then sent back to the client. Depending on the complexity of

the components, this process may repeat several times until the form is fully rendered and

visualized.

PHsPeed Manual: Controller Application Events and Component Lifecycle

In PHsPeed, the controller application plays a vital role and is executed multiple times during the

lifecycle of your application. This manual will guide you through the event-driven nature of the

controller application and the lifecycle of components used in your application.

Component Creation and Event Triggering

During each execution pass, the PHP code creates objects for all the components used in the

application. As the components are created, events are triggered, allowing you to perform specific

tasks in response to these events.

onCreate Event

When a component is being created, the onCreate event is triggered. You can use this event to

initialize properties of the respective component. However, keep in mind that you cannot set

properties of other components at this stage, as their creation might not have occurred yet.

onActivate Event

After all the components have been created, the onActivate event is triggered for each created

component. At this point, all components are available, and you can access their properties.

However, exercise caution when changing properties of other components during this event, as you

cannot be certain that they have already processed the onActivate event.

onBeforeRender Event

During the rendering phase, the onBeforeRender event is triggered for each component. This event

allows you to intervene with the output and perform additional actions based on component values.

© 2023 Aducom Software Netherlands

4

As all components are created and have their values set, the onBeforeRender event proves to be

extremely useful. Nevertheless, keep in mind that the sequence of components firing the

onBeforeRender event is not guaranteed.

Understanding the event-driven nature of the controller application and the lifecycle of components

is crucial to developing efficient and reliable applications using PHsPeed. By utilizing the appropriate

events, you can initialize, modify, and intervene with components at various stages of their lifecycle,

resulting in powerful and dynamic web applications.

Component depending events.

In addition to the standard events outlined in the documentation, PHsPeed components offer a

range of unique events that empower you to intercept and modify data within components. These

specialized events also enable the integration of alternative authentication methods such as LDAP

(Lightweight Directory Access Protocol) or SAML (Security Assertion Markup Language). Please note

© 2023 Aducom Software Netherlands

5

that, as of the current version, PHsPeed does not provide pre-built standard components specifically

dedicated to LDAP and SAML.

LDAP Integration:

LDAP integration is seamlessly supported by PHP through a concise code implementation. Crafting a

custom component for LDAP is not the most efficient approach due to the simplicity of integrating

LDAP with minimal lines of code.

SAML Integration:

PHsPeed has refrained from developing a standard SAML connector due to the presence of an

excellent external library called "simpleSAML." This library can be effortlessly imported and used

within your projects to streamline SAML integration.

SAML implementations often vary widely in terms of required parameters and setup specifics.

Designing a comprehensive SAML component would entail an overwhelming number of properties,

and comprehensive testing of all possible features would be virtually impractical.

Furthermore, many organizations adopt their own mechanisms to wrap SAML functionality. These

mechanisms might involve redirecting to a specialized login process or inspecting headers to

determine the next course of action. The intricacies of these diverse approaches make it challenging

to create a universally usable, straightforward SAML component.

Sample: intercept login procedure

In this section, we will illustrate the process of implementing a custom login procedure using

PHsPeed's custom events. The core principle of PHsPeed revolves around maintaining role-based

access to internal modules within the database, rather than relying on an external access farm. Once

the custom login procedure successfully completes, the standard role-based module of PHsPeed

seamlessly takes over.

Step-by-Step Guide:

Identify Custom Login Requirements:

Begin by identifying the specific requirements for your custom login procedure. This might involve

integrating with an LDAP server, validating user credentials

against an external system, or implementing a unique

authentication mechanism, i.e. a select to an external user table.

Creating a Custom Event:

In your PHsPeed project, select the root component. In this

component you need to enable the custom login event by setting

it's property to true. As a security measure this feature is

disabled by default.

Implementing the Custom Login Logic:

The next step is to create the login event procedure. Select the

PHP Events tab and find the onLogin event. This event will get

fired when PHsPeed requires to login. If you have used the

© 2023 Aducom Software Netherlands

6

templates, then this event will get fired when the user commits his credentials. If you write your own

login form, then the event will get fired when you call the PHsPeed login procedure.

Within the custom event handler, write the necessary logic to

execute the custom login procedure. This may involve interacting

with external systems, validating user input, and ensuring the

security of the authentication process.

In the onLogin event you have to write your own login code. If the credentials are ok then call:

setLoggedOn(); // set logon status

or

SetLoggedOn($usernum); // set logon status and the user identifier is stored as UserNum in the

session variables. To retrieve this value at any time, use GetSessionVar('UserNum',");

If you want to make use of the onLoginFail / onLoginSuccess events, then do not use the

SetLoggedOn procedure, but simply return true (successful) or false (not successful).

<< my login code >>

If ok {

 return true;

} else {

 return false;

}

Above sample also shows you how you can save variables in your session that will live during your

session.

SetSessionVar(‘MyVar’, ‘my value’);

To retrieve the value back use:

$MyVal = GetSessionVar(‘MyVar’, ‘’);

The second parameter will be returned when the session variable is not found.

Transition to Standard Role-Based Module:

Upon successful completion of the custom login procedure, PHsPeed's built-in role-based access

module takes over. This ensures that the authenticated user gains access to the appropriate internal

modules according to their assigned roles.

© 2023 Aducom Software Netherlands

7

The magic of $app and $$ variable

To learn more about the internals of PHsPeed, it is important to know that there is a 'super variable',

that contains references to all your components. Actually it is not a variable but a class of type

spapplication.

Suppose you have a module called 'shops' then PHsPeed will generate the following line of code:

$app = new shops($config, $connectionstrings);

The application class is declared in the top of the module:

class shops extends spapplication {

 component declarations

 public function __construct($config, $connectionstrings) {

 creation of all components

 }

}

Simplified example

class shops extends spapplication {

 protected $shops_root_1;

 protected $shops_dbconnection_1;

 protected $shops_dbtable_1;

 protected $shops_datasource_1;

 protected $shops_form_1;

 protected $shops_gridpanel_1;

 protected $shops_dbgrid_1;

 public function __construct($config, $connectionstrings) {

 $this->shops_form_1 = new shops_form_1($this, $currentform);

 $this->registerComponent($this->shops_form_1);

 $currentform=$this->shops_form_1;

 $this->registerForm($this->shops_form_1);

 … etc for each component on the form.

 }

}

Upon creating the `$app` object, you gain access to all available components within your form.

However, a closer look at your form design might reveal that the components lack a prefix. For

instance, `root_1` on your form will appear as `$shops_root_1` in your code. This prompts the

question: why does PHsPeed add a prefix?

Consider a scenario where your application features a header and footer, each containing labels and

edit fields. By default, if you adhere to these naming conventions, PHsPeed will assign names like

`edit_1`, `edit_2`, and so forth to your edit fields. However, this naming scheme applies not just

within modules but across all modules. Consequently, when these modules are eventually merged,

conflicts can arise due to duplicate names.

To avert such conflicts, PHsPeed implements prefixes derived from the module names. This ensures

that the module name remains unique, both for Building Blocks and Application names. The prefix

helps differentiate components and circumvents naming clashes during the merging process.

© 2023 Aducom Software Netherlands

8

Navigating this naming convention and referencing form fields may raise queries. This is where the

`$$` variable comes into play. When you need to access a form field, you can employ `$$`, and

PHsPeed intelligently appends the appropriate module name.

For instance, if you were to reference an edit field within a module named `edit_1`, you can utilize

the `$$` variable in the following manner: `$$edit_1`. This instructs PHsPeed to locate the specific

edit field within the designated module, resolving any potential naming conflicts.

In the event that you decide to rename a module, rest assured that PHsPeed will seamlessly

accommodate this modification. By utilizing the `$$` variable, the referencing of form fields remains

consistent, even if the module name evolves.

To summarize, the prefixing strategy in PHsPeed ensures clear identification and differentiation of

components within modules, thereby preventing name clashes during merging. The `$$` variable

simplifies the referencing of form fields and maintains accuracy when module names undergo

alterations.

Actually, you have seen this in the Ajax sample a few lessons ago.

Naming of HTML fields

In the realm of PHsPeed application development, consistency in field naming is of paramount

importance. The PHsPeed template mechanism employs a robust approach to seamlessly transition

placeholders into functional fields. These placeholders, often identified by the nomenclature

"phid_modulename" – for instance, "phid_shops_dbgrid_1" – undergo a transformation process for

seamless integration within the rendered output.

Consider the placeholder transformation process exemplified below:

1. Placeholder: phid_shops_dbgrid_1

2. Identifier Post-Transformation: id_shops_dbgrid_1

3. Field Name Post-Transformation: shops_dbgrid_1

Notably, this systematic approach extends to intricate components like dbgrids, buttons, and

checkboxes. These components follow a discerning naming scheme, influenced by their owning

context. To elucidate, observe the following button element:

<button type="button" id="id_shops_dbgrid_1_cbtn_0" ...>

In this illustration, the button component embedded within the "shops_dbgrid_1" entity boasts a

distinctive identifier ("id_shops_dbgrid_1_cbtn_0"), intrinsically linked to its parent component. This

strategic naming methodology fosters unambiguous identification and streamlined

intercommunication among diverse elements entrenched within the component hierarchy.

